Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glutathione-glutaredoxin is an efficient electron donor system for mammalian p53R2-R1-dependent ribonucleotide reductase.

Identifieur interne : 000161 ( Main/Exploration ); précédent : 000160; suivant : 000162

Glutathione-glutaredoxin is an efficient electron donor system for mammalian p53R2-R1-dependent ribonucleotide reductase.

Auteurs : Rajib Sengupta [Suède] ; Lucia Coppo [Suède] ; Pradeep Mishra [Suède] ; Arne Holmgren [Suède]

Source :

RBID : pubmed:31266802

Descripteurs français

English descriptors

Abstract

Deoxyribonucleotides are DNA building blocks and are produced de novo by reduction of ribose to deoxyribose. This reduction is catalyzed by ribonucleotide reductase (RNR), a heterodimeric tetramer enzyme in mammalian cells, having one of two free radical-containing subunits called R2 and p53R2. R2 is S-phase specific and used for DNA replication, whereas p53R2 functions in DNA repair and mitochondrial DNA synthesis. The larger RNR subunit, R1, has catalytically active cysteine thiols in its buried active site and a C-terminal swinging arm, with a Cys-Leu-Met-Cys sequence suggested to act as a shuttle dithiol/disulfide for electron transport. After each catalytic cycle the active site contains a disulfide, which has to be reduced for turnover. Thioredoxin (Trx) and glutaredoxin (Grx) systems have been implicated as electron donors for the RNR disulfide reduction via the swinging arm. Using mouse R1-R2 and R1-p53R2 complexes, we found here that the catalytic efficiency of the GSH-Grx system is 4-6 times higher than that of the Trx1 system. For both complexes, the Vmax values for Grx are strongly depended on GSH concentrations. The GSH disulfide resulting from the Grx reaction was reduced by NADPH and GSH reductase and this enzyme was essential because reaction with GSH alone yielded only little activity. These results indicate that C-terminal shuttle dithiols of mammalian R1 have a crucial catalytic role and that the GSH-Grx system favors the R1-p53R2 enzyme for DNA replication in hypoxic conditions, mitochondrial DNA synthesis, and in DNA repair outside the S-phase.

DOI: 10.1074/jbc.RA119.008752
PubMed: 31266802
PubMed Central: PMC6709626


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glutathione-glutaredoxin is an efficient electron donor system for mammalian p53R2-R1-dependent ribonucleotide reductase.</title>
<author>
<name sortKey="Sengupta, Rajib" sort="Sengupta, Rajib" uniqKey="Sengupta R" first="Rajib" last="Sengupta">Rajib Sengupta</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institute, Stockholm SE-17177, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institute, Stockholm SE-17177</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Coppo, Lucia" sort="Coppo, Lucia" uniqKey="Coppo L" first="Lucia" last="Coppo">Lucia Coppo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institute, Stockholm SE-17177, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institute, Stockholm SE-17177</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mishra, Pradeep" sort="Mishra, Pradeep" uniqKey="Mishra P" first="Pradeep" last="Mishra">Pradeep Mishra</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institute, Stockholm SE-17177, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institute, Stockholm SE-17177</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institute, Stockholm SE-17177, Sweden arne.holmgren@ki.se.</nlm:affiliation>
<country wicri:rule="url">Suède</country>
<wicri:regionArea>Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institute, Stockholm SE-17177</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31266802</idno>
<idno type="pmid">31266802</idno>
<idno type="doi">10.1074/jbc.RA119.008752</idno>
<idno type="pmc">PMC6709626</idno>
<idno type="wicri:Area/Main/Corpus">000132</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000132</idno>
<idno type="wicri:Area/Main/Curation">000132</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000132</idno>
<idno type="wicri:Area/Main/Exploration">000132</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glutathione-glutaredoxin is an efficient electron donor system for mammalian p53R2-R1-dependent ribonucleotide reductase.</title>
<author>
<name sortKey="Sengupta, Rajib" sort="Sengupta, Rajib" uniqKey="Sengupta R" first="Rajib" last="Sengupta">Rajib Sengupta</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institute, Stockholm SE-17177, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institute, Stockholm SE-17177</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Coppo, Lucia" sort="Coppo, Lucia" uniqKey="Coppo L" first="Lucia" last="Coppo">Lucia Coppo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institute, Stockholm SE-17177, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institute, Stockholm SE-17177</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mishra, Pradeep" sort="Mishra, Pradeep" uniqKey="Mishra P" first="Pradeep" last="Mishra">Pradeep Mishra</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institute, Stockholm SE-17177, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institute, Stockholm SE-17177</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institute, Stockholm SE-17177, Sweden arne.holmgren@ki.se.</nlm:affiliation>
<country wicri:rule="url">Suède</country>
<wicri:regionArea>Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institute, Stockholm SE-17177</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Electrons (MeSH)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (metabolism)</term>
<term>Mice (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Ribonucleotide Reductases (metabolism)</term>
<term>Tumor Suppressor Protein p53 (chemistry)</term>
<term>Tumor Suppressor Protein p53 (genetics)</term>
<term>Tumor Suppressor Protein p53 (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Protéine p53 suppresseur de tumeur (composition chimique)</term>
<term>Protéine p53 suppresseur de tumeur (génétique)</term>
<term>Protéine p53 suppresseur de tumeur (métabolisme)</term>
<term>Ribonucleotide reductases (métabolisme)</term>
<term>Souris (MeSH)</term>
<term>Électrons (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Tumor Suppressor Protein p53</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Tumor Suppressor Protein p53</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Ribonucleotide Reductases</term>
<term>Tumor Suppressor Protein p53</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéine p53 suppresseur de tumeur</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéine p53 suppresseur de tumeur</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Protéine p53 suppresseur de tumeur</term>
<term>Ribonucleotide reductases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Electrons</term>
<term>Mice</term>
<term>Models, Molecular</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Modèles moléculaires</term>
<term>Souris</term>
<term>Électrons</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Deoxyribonucleotides are DNA building blocks and are produced
<i>de novo</i>
by reduction of ribose to deoxyribose. This reduction is catalyzed by ribonucleotide reductase (RNR), a heterodimeric tetramer enzyme in mammalian cells, having one of two free radical-containing subunits called R2 and p53R2. R2 is S-phase specific and used for DNA replication, whereas p53R2 functions in DNA repair and mitochondrial DNA synthesis. The larger RNR subunit, R1, has catalytically active cysteine thiols in its buried active site and a C-terminal swinging arm, with a Cys-Leu-Met-Cys sequence suggested to act as a shuttle dithiol/disulfide for electron transport. After each catalytic cycle the active site contains a disulfide, which has to be reduced for turnover. Thioredoxin (Trx) and glutaredoxin (Grx) systems have been implicated as electron donors for the RNR disulfide reduction via the swinging arm. Using mouse R1-R2 and R1-p53R2 complexes, we found here that the catalytic efficiency of the GSH-Grx system is 4-6 times higher than that of the Trx1 system. For both complexes, the
<i>V</i>
<sub>max</sub>
values for Grx are strongly depended on GSH concentrations. The GSH disulfide resulting from the Grx reaction was reduced by NADPH and GSH reductase and this enzyme was essential because reaction with GSH alone yielded only little activity. These results indicate that C-terminal shuttle dithiols of mammalian R1 have a crucial catalytic role and that the GSH-Grx system favors the R1-p53R2 enzyme for DNA replication in hypoxic conditions, mitochondrial DNA synthesis, and in DNA repair outside the S-phase.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31266802</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>294</Volume>
<Issue>34</Issue>
<PubDate>
<Year>2019</Year>
<Month>08</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Glutathione-glutaredoxin is an efficient electron donor system for mammalian p53R2-R1-dependent ribonucleotide reductase.</ArticleTitle>
<Pagination>
<MedlinePgn>12708-12716</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.RA119.008752</ELocationID>
<Abstract>
<AbstractText>Deoxyribonucleotides are DNA building blocks and are produced
<i>de novo</i>
by reduction of ribose to deoxyribose. This reduction is catalyzed by ribonucleotide reductase (RNR), a heterodimeric tetramer enzyme in mammalian cells, having one of two free radical-containing subunits called R2 and p53R2. R2 is S-phase specific and used for DNA replication, whereas p53R2 functions in DNA repair and mitochondrial DNA synthesis. The larger RNR subunit, R1, has catalytically active cysteine thiols in its buried active site and a C-terminal swinging arm, with a Cys-Leu-Met-Cys sequence suggested to act as a shuttle dithiol/disulfide for electron transport. After each catalytic cycle the active site contains a disulfide, which has to be reduced for turnover. Thioredoxin (Trx) and glutaredoxin (Grx) systems have been implicated as electron donors for the RNR disulfide reduction via the swinging arm. Using mouse R1-R2 and R1-p53R2 complexes, we found here that the catalytic efficiency of the GSH-Grx system is 4-6 times higher than that of the Trx1 system. For both complexes, the
<i>V</i>
<sub>max</sub>
values for Grx are strongly depended on GSH concentrations. The GSH disulfide resulting from the Grx reaction was reduced by NADPH and GSH reductase and this enzyme was essential because reaction with GSH alone yielded only little activity. These results indicate that C-terminal shuttle dithiols of mammalian R1 have a crucial catalytic role and that the GSH-Grx system favors the R1-p53R2 enzyme for DNA replication in hypoxic conditions, mitochondrial DNA synthesis, and in DNA repair outside the S-phase.</AbstractText>
<CopyrightInformation>© 2019 Sengupta et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sengupta</LastName>
<ForeName>Rajib</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institute, Stockholm SE-17177, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Coppo</LastName>
<ForeName>Lucia</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0001-6902-6346</Identifier>
<AffiliationInfo>
<Affiliation>Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institute, Stockholm SE-17177, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mishra</LastName>
<ForeName>Pradeep</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institute, Stockholm SE-17177, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Holmgren</LastName>
<ForeName>Arne</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0001-5046-1815</Identifier>
<AffiliationInfo>
<Affiliation>Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institute, Stockholm SE-17177, Sweden arne.holmgren@ki.se.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>07</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016159">Tumor Suppressor Protein p53</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.17.4.-</RegistryNumber>
<NameOfSubstance UI="D012264">Ribonucleotide Reductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004583" MajorTopicYN="Y">Electrons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012264" MajorTopicYN="N">Ribonucleotide Reductases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016159" MajorTopicYN="N">Tumor Suppressor Protein p53</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">DNA repair</Keyword>
<Keyword MajorTopicYN="Y">DNA replication</Keyword>
<Keyword MajorTopicYN="Y">Glutathione</Keyword>
<Keyword MajorTopicYN="Y">antioxidant system</Keyword>
<Keyword MajorTopicYN="Y">cell cycle</Keyword>
<Keyword MajorTopicYN="Y">deoxyribonucleotide</Keyword>
<Keyword MajorTopicYN="Y">enzyme kinetics</Keyword>
<Keyword MajorTopicYN="Y">glutaredoxin</Keyword>
<Keyword MajorTopicYN="Y">ribonucleotide reductase</Keyword>
<Keyword MajorTopicYN="Y">thioredoxin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>04</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>06</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31266802</ArticleId>
<ArticleId IdType="pii">RA119.008752</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.RA119.008752</ArticleId>
<ArticleId IdType="pmc">PMC6709626</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2000 Mar 2;404(6773):42-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10716435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2000 Dec;10(6):731-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11114511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jul 13;276(28):26269-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11297543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 10;276(32):30374-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11397793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Nov 2;276(44):40647-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11517226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2002 Jan 15;41(2):462-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11781084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Oct 13;31(40):9733-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1382592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1964 Oct;239:3436-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14245400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 27;279(9):7537-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14676218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 Sep;70(9):5159-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15345395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Mar 24;281(12):7834-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16436374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2006;75:681-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16756507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2006 May-Jun;8(5-6):735-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16771665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Jan;9(1):25-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2217-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17277086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jun 8;282(23):16820-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17416930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2007 Jun;39(6):776-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17486094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2007 Jun;39(6):703-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17534360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14324-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17726094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Feb 19;30(7):1939-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1847079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17801-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18997010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Mar 27;284(13):8233-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19176520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Jul 29;4(7):e6413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19641610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 May;87(9):3343-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1970635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2010 Jul 15;123(Pt 14):2402-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20571049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2010 Dec 1;49(11):1617-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20851762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2011 Jan 15;433(2):303-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2010 Nov 15;70(22):9505-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21045148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2011 Mar;18(3):316-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21336276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Nov 2;287(45):38210-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22977247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2014 Mar 15;449:139-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24374250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Biol Chem. 2014 Feb 26;5(1):68-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24600515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Jul 25;264(21):12249-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2663852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2016 Apr 15;499:24-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26836485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2017 Apr 20;66(2):206-220.e9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28416140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2017 Jun 27;19(13):2771-2781</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28658624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2018 Mar 2;17(3):1091-1100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29356545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1987 Nov 3;26(22):6905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3322391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Radiat Res. 1988 May;114(2):215-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3375425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 May 10;254(9):3672-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">34620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1979;48:133-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">382982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Sep 16;269(37):23171-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8083221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Sep 21;32(37):9701-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8373774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Feb 2;271(5):2856-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8576266</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
<region>
<li>Svealand</li>
</region>
<settlement>
<li>Stockholm</li>
</settlement>
</list>
<tree>
<country name="Suède">
<region name="Svealand">
<name sortKey="Sengupta, Rajib" sort="Sengupta, Rajib" uniqKey="Sengupta R" first="Rajib" last="Sengupta">Rajib Sengupta</name>
</region>
<name sortKey="Coppo, Lucia" sort="Coppo, Lucia" uniqKey="Coppo L" first="Lucia" last="Coppo">Lucia Coppo</name>
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
<name sortKey="Mishra, Pradeep" sort="Mishra, Pradeep" uniqKey="Mishra P" first="Pradeep" last="Mishra">Pradeep Mishra</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000161 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000161 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31266802
   |texte=   Glutathione-glutaredoxin is an efficient electron donor system for mammalian p53R2-R1-dependent ribonucleotide reductase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31266802" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020